Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
ISME J ; 16(7): 1798-1808, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35396347

RESUMO

Lost Hammer Spring, located in the High Arctic of Nunavut, Canada, is one of the coldest and saltiest terrestrial springs discovered to date. It perennially discharges anoxic (<1 ppm dissolved oxygen), sub-zero (~-5 °C), and hypersaline (~24% salinity) brines from the subsurface through up to 600 m of permafrost. The sediment is sulfate-rich (1 M) and continually emits gases composed primarily of methane (~50%), making Lost Hammer the coldest known terrestrial methane seep and an analog to extraterrestrial habits on Mars, Europa, and Enceladus. A multi-omics approach utilizing metagenome, metatranscriptome, and single-amplified genome sequencing revealed a rare surface terrestrial habitat supporting a predominantly lithoautotrophic active microbial community driven in part by sulfide-oxidizing Gammaproteobacteria scavenging trace oxygen. Genomes from active anaerobic methane-oxidizing archaea (ANME-1) showed evidence of putative metabolic flexibility and hypersaline and cold adaptations. Evidence of anaerobic heterotrophic and fermentative lifestyles were found in candidate phyla DPANN archaea and CG03 bacteria genomes. Our results demonstrate Mars-relevant metabolisms including sulfide oxidation, sulfate reduction, anaerobic oxidation of methane, and oxidation of trace gases (H2, CO2) detected under anoxic, hypersaline, and sub-zero ambient conditions, providing evidence that similar extant microbial life could potentially survive in similar habitats on Mars.


Assuntos
Metano , Microbiota , Anaerobiose , Archaea/genética , Archaea/metabolismo , Gases/metabolismo , Sedimentos Geológicos/microbiologia , Metano/metabolismo , Oxirredução , Oxigênio/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Sulfatos/metabolismo , Sulfetos/metabolismo
2.
Astrobiology ; 20(9): 1029-1047, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31916858

RESUMO

Sulfate and iron oxide deposits in Río Tinto (Southwestern Spain) are a terrestrial analog of early martian hematite-rich regions. Understanding the distribution and drivers of microbial life in iron-rich environments can give critical clues on how to search for biosignatures on Mars. We simulated a robotic drilling mission searching for signs of life in the martian subsurface, by using a 1m-class planetary prototype drill mounted on a full-scale mockup of NASA's Phoenix and InSight lander platforms. We demonstrated fully automated and aseptic drilling on iron and sulfur rich sediments at the Río Tinto riverbanks, and sample transfer and delivery to sterile containers and analytical instruments. As a ground-truth study, samples were analyzed in the field with the life detector chip immunoassay for searching microbial markers, and then in the laboratory with X-ray diffraction to determine mineralogy, gas chromatography/mass spectrometry for lipid composition, isotope-ratio mass spectrometry for isotopic ratios, and 16S/18S rRNA genes sequencing for biodiversity. A ubiquitous presence of microbial biomarkers distributed along the 1m-depth subsurface was influenced by the local mineralogy and geochemistry. The spatial heterogeneity of abiotic variables at local scale highlights the importance of considering drill replicates in future martian drilling missions. The multi-analytical approach provided proof of concept that molecular biomarkers varying in compositional nature, preservation potential, and taxonomic specificity can be recovered from shallow drilling on iron-rich Mars analogues by using an automated life-detection lander prototype, such as the one proposed for NASA's IceBreaker mission proposal.


Assuntos
Exobiologia/métodos , Meio Ambiente Extraterreno/química , Sedimentos Geológicos/análise , Marte , Bactérias/química , Bactérias/metabolismo , Biomarcadores/análise , Biomarcadores/química , Biomarcadores/metabolismo , Compostos Férricos/análise , Compostos Férricos/química , Cromatografia Gasosa-Espectrometria de Massas , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Compostos de Ferro/análise , Compostos de Ferro/química , Lipídeos/análise , Lipídeos/química , Minerais/análise , Minerais/química , Rios/química , Rios/microbiologia , Robótica , Simulação de Ambiente Espacial/métodos , Espanha , Sulfatos/análise , Sulfatos/química , Difração de Raios X
3.
Int. microbiol ; 19(3): 161-173, sept. 2016. ilus, tab, graf
Artigo em Inglês | IBECS | ID: ibc-162893

RESUMO

A previously established chronosequence from Pia Glacier forefield in Tierra del Fuego (Chile) containing soils of different ages (from bare soils to forest ones) is analyzed. We used this chronosequence as framework to postulate that microbial successional development would be accompanied by changes in functionality. To test this, the GeoChip functional microarray was used to identify diversity of genes involved in microbial carbon and nitrogen metabolism, as well as other genes related to microbial stress response and biotic interactions. Changes in putative functionality generally reflected succession-related taxonomic composition of soil microbiota. Major shifts in carbon fixation and catabolism were observed, as well as major changes in nitrogen metabolism. At initial microbial dominated succession stages, microorganisms could be mainly involved in pathways that help to increase nutrient availability, while more complex microbial transformations such as denitrification and methanogenesis, and later degradation of complex organic substrates, could be more prevalent at vegetated successional states. Shifts in virus populations broadly reflected changes in microbial diversity. Conversely, stress response pathways appeared relatively well conserved for communities along the entire chronosequence. We conclude that nutrient utilization is likely the major driver of microbial succession in these soils (AU)


No disponible


Assuntos
Microbiologia do Solo , Ecossistema Glacial/análise , Contagem de Colônia Microbiana/métodos , Estresse Fisiológico , Resistência Microbiana a Medicamentos , Viabilidade Microbiana , Biota/fisiologia
4.
Int Microbiol ; 19(3): 161-173, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28494086

RESUMO

A previously established chronosequence from Pia Glacier forefield in Tierra del Fuego (Chile) containing soils of different ages (from bare soils to forest ones) is analyzed. We used this chronosequence as framework to postulate that microbial successional development would be accompanied by changes in functionality. To test this, the GeoChip functional microarray was used to identify diversity of genes involved in microbial carbon and nitrogen metabolism, as well as other genes related to microbial stress response and biotic interactions. Changes in putative functionality generally reflected succession-related taxonomic composition of soil microbiota. Major shifts in carbon fixation and catabolism were observed, as well as major changes in nitrogen metabolism. At initial microbial dominated succession stages, microorganisms could be mainly involved in pathways that help to increase nutrient availability, while more complex microbial transformations such as denitrification and methanogenesis, and later degradation of complex organic substrates, could be more prevalent at vegetated successional states. Shifts in virus populations broadly reflected changes in microbial diversity. Conversely, stress response pathways appeared relatively well conserved for communities along the entire chronosequence. We conclude that nutrient utilization is likely the major driver of microbial succession in these soils. [Int Microbiol 19(3):161-173 (2016)].


Assuntos
Camada de Gelo/microbiologia , Microbiologia do Solo , Carbono/metabolismo , Ciclo do Carbono , Chile , Ecologia , Nitrogênio/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...